148 research outputs found

    Coherent combining in an Yb doped double core fiber laser

    Get PDF
    International audienceCoherent combining is demonstrated in a clad pumped Yb doped double core fiber laser. A slope efficiency of more than 70 % is achieved with 96 % of the total output power on the fundamental mode of one of the two cores. This high combining efficiency is obtained when both cores are coupled via a biconical fused taper in a Michelson interferometer configuration

    Adaptive Kerr-assisted transverse mode selection in multimode fibers

    Get PDF
    Multimode optical fibers (MMFs) have recently regained interest because of the degrees of freedom associated with their different eigenmodes. In the nonlinear propagation regime in particular, new phenomena have been unveiled in graded-index (GRIN) MMFs such as geometric parametric instabilities and Kerr beam self-cleaning [1, 2]. The speckled pattern observed at the output of the MMF at low powers, is transformed at high powers into a bell-shaped beam close to the fundamental mode. Recent work has also demonstrated that Kerr beam self-cleaning can lead to a low-order spatial mode, different from a bell-shape, by adjusting the laser beam in-coupling conditions [3]. An attractive way to systematically control the spatial excitation conditions at the fiber input is provided by the use of a spatial light modulator (SLM) which permits to profile the beam wavefront entering the MMF. In most cases, experiments involving adaptive optics consider linear propagation through scattering plates or MMFs [4]. So far, few works have dealt with the nonlinear propagation regime[5, 6]

    Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser

    Get PDF
    International audienceWe report an all solid state laser device producing tunable dual wavelength emission in the near IR region (1060nm, and 1550 nm) by use of an Er/Yb co-doped fiber. Generation of continuous-wave radiation around 630 nm is then demonstrated by extra-cavity sum frequency mixing in a Periodically Poled Lithium Niobate (PPLN) crystal. Quasi phase matching conditions are obtained over 7 nm to generate tunable coherent light in the red spectral range

    Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier

    No full text
    International audienceActive coherent beam combination using a 7-non-coupled core,polarization maintaining, air-clad, Yb-doped fiber is demonstrated as amonolithic and compact power-scaling concept for ultrafast fiber lasers. Amicrolens array matched to the multicore fiber and an active phasecontroller composed of a spatial light modulator applying a stochasticparallel gradient descent algorithm are utilized to perform coherentcombining in the tiled aperture geometry. The mitigation of nonlineareffects at a pulse energy of 8.9 ÎĽJ and duration of 860 fs is experimentallyverified at a repetition rate of 100 kHz. The experimental combiningefficiency results in a far field central lobe carrying 49% of the total power,compared to an ideal value of 76%. This efficiency is primarily limited bygroup delay differences between cores which is identified as the maindrawback of the system. Minimizing these group delay issues, e.g. by usingshort and straight rod-type multicore fibers, should allow a practical powerscaling solution for femtosecond fiber systems

    Self-organized fiber beam combining

    No full text
    International audienc

    Temporal synchronization and spectral combining of pulses from fiber lasers Q-switched by independent MEMS micro-mirrors

    No full text
    International audienceWe present what we believe to be the first demonstration of spectral combining of multiple fiber lasers Q-switched by independent micro-electro-mechanical system (MEMS). By correlating the actuation of the individual MEMS devices, the associated Q-switched lasers can be operated in either synchronous or asynchronous modes in such a way that their overall combined output may result in high energy emission pulses or in laser emission with higher pulse repetition rate. In a proof-of-principle experiment, we demonstrate the combination of four individual Q-switched lasers (each of them operating at 20 kHz repetition rate) leading to a final laser system generating pulses with a repetition rate of 80 kHz
    • …
    corecore